HL7 en de coronacrisis

In deze tijd van een pandemie van COVID-19 duikt de vraag op: wat kunnen we bijdragen aan het oplossen van deze crisis? En wat kunnen standaarden zoals HL7 bijdragen?

Allereerst geldt natuurlijk dat HL7 al veel bijdraagt: laboratoria en ziekenhuizen kunnen niet zonder HL7v2, o.a. het LSP gebruikt HL7v3 en FHIR speelt een grote rol bij BGZ en MedMij. Maar beter dan trots zijn op behaalde resultaten in het verleden is het te kijken naar uitdagingen die nog opgelost moeten worden. Dus: wat kan HL7 nog meer bijdragen?

SARS-CoV-2 without background

Laten we wel wezen: standaarden invoeren waar ze nog niet gebruikt worden kost tijd. Op de korte termijn – nu – moet gewerkt worden met bestaande systemen of ad hoc oplossingen (zeg maar Excel of de telefoon). Maar zoals het er naar uit ziet is deze crisis voorlopig niet voorbij. Dat duurt waarschijnlijk tot er een vaccin is: een jaar of zelfs langer. Misschien kunnen de meest extreme maatregelen op een gegeven moment wat versoepeld worden, maar ook dan blijft het: direct mensen met klachten opsporen, isoleren, patiënten behandelen, schaarse capaciteit nauwlettend monitoren. En wordt het noodzakelijk schaalbare, beheersbare oplossingen te realiseren.

Gelukkig hebben we al een behoorlijke infrastructuur rond NICE, RIVM en de GGD’en. Neemt niet weg dat deze infrastructuur nu onder druk staat als nooit tevoren. Zonder twijfel is er meer nodig en mogelijk dan wat nu kan. Deze crisis kent ook heel specifieke problemen, van afstand houden tot de behandeling van deze groep patiënten.

Een overzicht: het zal zeker niet volledig zijn. Heb je aanvullingen of correcties, mail me op marcdegraauw@gmail.com.

Electronic Case Reporting

Bij het evalueren van de behandeling van corona-patiënten is informatie essentieel. We moeten zo spoedig mogelijk beoordelen wat het beste werkt en bij wie. Wanneer het aantal ziekenhuisopnames met 1/3 daalt, en het aantal patiënten wat vervolgens naar de IC moet ook met 1/3, is het aantal benodigde IC-bedden al gehalveerd. Ook zonder geneesmiddel is de optimale behandeling van belang. De ziekenhuizen werken al samen om een database met gegevens van IC-patiënten aan te leggen. Hetzelfde is nodig van niet-IC patiënten. Ook moet gemonitord worden waar en wanneer ziektegevallen opduiken. Het gaat dan om “publieke gezondheid”, dus niet de behandeling of overdracht van een individuele patiënt  maar het beheersen en onder controle brengen van een uitbraak. (Dat gebeurt nu al met de huidige systemen van GGD’en RIVM, maar daar zal vast wat “op maat” te maken zijn voor deze ziekte.) Laten we  kijken welke HL7 stukken in deze puzzel passen.

COVID-19 outbreak the Netherlands per capita cases map

Er zijn HL7 standaarden voor Electronic Case Reporting (eCR): in CDA en FHIR. Beide zijn “US Realm”, dus toegespitst op de situatie in de Verenigde Staten. Dat maakt ze minder geschikt voor toepassing zonder aanpassing in Nederland. Zo kent b.v. het FHIR eCR profile een message infrastructuur die we hier niet zo zouden willen overnemen, en heeft de FHIR eCR Patient us-core-race wel, maar nl-core-humanname (met “onze” tussenvoegsels) niet. De eCR profielen kunnen wel een kader geven voor een Nederlandse invulling.

Daarnaast zijn – uiteraard – de bestaande standaarden nog niet toegespitst op COVID-19: het gaat om algemene profielen voor besmettelijke ziekten. Hoe zou een profiel voor COVID-19 er ongeveer uitzien? Een schets (disclaimer: ik ben geen arts, en hoewel ik al een tijd in ICT in de gezondheidszorg werk zullen artsen  een dergelijk profiel moeten opstellen – dit is niet meer dan een indruk).

  1. Demografische gegevens: geslacht, geboortedatum, locatie, identificatie, eventueel etniciteit (mogelijk is er een genetische component in mate bevattelijkheid)
  2. Klachten en diagnose
    • koorts, (droge) hoest, vermoeidheid, kortademigheid, spierpijn, hoofdpijn, misselijkheid, loopneus, reuk/smaak etc.
    • dit alles waarschijnlijk met een schaal van mate van ernst
    • longontsteking, ARDS ( acute respiratory distress syndrome) etc.
    • aanvang klachten, verloop tot opname etc.
  3. Beeldvorming
    • CT: matglasafwijkingen, reversed halo, “crazy pavement” etc.
  4. Voorgeschiedenis
    • obesitas, chronische hartaandoeningen, longziekten (COPD, asthma, emfyseem), diabetes, immunogecompromitteerd, roker etc.
  5. Behandelplan
    • opname IC, beademing, etc.
  6. Medicatie
    • chloroquine, hydroxychloroquine en remdesivir (allen experimenteel) etc.
  7. Verloop/vitale functies
    • temperatuur, bloeddruk, pols, etc.
  8. Uitslagen
    • getest op SARS-CoV2 ja/nee, uitslag (nu PCR, LOINC 94315-9 en 94314-2), binnenkort antilichaam/antigen)
    • influenza, rhinovirus, enterovirus, corona (OC43m 229E, HKU1, NL63) etc.
    • serologie (niet diagnostisch, wel voor verloop): diverse bloedwaarden

(Bronnen: o.a. LCI, SWAB ,CDC )

We verkeren in Nederland in de gelukkige situatie dat een groot deel van deze benodigde componenten al gestandaardiseerd is in de BGZ en de onderliggende zorginformatiebouwstenen (zibs). Daarbij horen ook HL7 FHIR profielen. Een groot deel van het bovenstaande past in zibs voor Metingen, Medicatie, Klinische context etc. LOINC- en Snomedcodes voor COVID-19 zijn al uitgegeven door Nictiz. Veel van deze gegevens (maar zeker niet alle) zitten al in de datasets van de stichting NICE , de GGD’en het RIVM. Het is de rol van deze zorginstellingen en zorgprofessionals aan te geven verder wat nodig is: de bouwstenen zijn er al.

Wat er nog niet is, is een profiel voor COVID-19: wat willen we precies vastleggen en uitwisselen voor deze ziekte? Wanneer dat er wel is, kunnen we de bestaande componenten op een uniforme manier vullen. Ontbrekende delen kunnen we snel specificeren. Daarmee wordt het mogelijk een langdurige uitwisseling van deze essentiële gegevens op een beheersbare manier te regelen, direct vanuit het EPD. Want op korte termijn kunnen we de standaarden even overslaan, maar als dit virus een jaar of zelfs langer gevolgd moet worden, worden standaarden onontbeerlijk.

PGO’s en de thuispatiënt

Gegevens zijn ook nodig van patiënten die thuis uitzieken. Nu is er maar weinig inzicht in het verloop van die gevallen, en ook te weinig over factoren die ziekenhuisopname beïnvloeden. En zelfs van mensen met klachten, van wie nog niet duidelijk is of ze patiënt zijn, zoals gebruikers van de OLVG coronacheck. Hoe meer data, hoe beter.

Photo by Paul Hanaoka on Unsplash

In Nederland heeft MedMij PGO’s uitgerold, waarmee burgers hun eigen gezondsheidsgegevens kunnen inzien en delen. En belangrijker: waarmee ze gegevens toe kunnen voegen. Kunnen we die PGO’s op gaan gebruiken om de bevolking (nu ja, diegenen die deel willen nemen) te monitoren? Daarmee is het in principe mogelijk inzicht te krijgen in wie geen klachten hebben, wie klachten ontwikkelen en hoe dat verloopt. Binnenkort, wanneer er serologische testen beschikbaar komen waarmee massaal getest kan worden op antigenen en antilichamen van SARS-CoV2 kunnen ook die uitslagen gedeeld worden.

Welke gegevens zijn dan nodig? Het is feitelijk een deelverzameling van de eCR gegevens. Wederom een schets:

  1. Demografische gegevens: geslacht, geboortedatum, locatie
  2. Klachten
    • koorts, (droge) hoest, vermoeidheid, kortademigheid, spierpijn, hoofdpijn, misselijkheid, verkoudheid, reuk/smaak etc.
  3. Voorgeschiedenis
    • obesitas, chronische hartaandoeningen, longziekten (COPD, asthma), diabetes, immunogecompromitteerd, roker etc.
  4. Familie en omgeving
    • personen met en zonder klachten in de directe omgeving, of getest en reeds genezen van COVID-19
  5. Verloop/vitale functies
    • temperatuur, ademhaling, gewicht, lengte etc.
    • voeding, vochtopname, welbevinden etc.
  6. Testuitslagen
    • van het lab of thuistests

Ook hier is het meeste al aanwezig als zelfmetingen in het PGO, alleen dan nog niet specifiek gemaakt voor wat je wilt weten van deze aandoening. Datzelfde geldt voor de klachten: wanneer je zinvolle informatie van heel veel burgers wilt, is gericht uitvragen wat je wilt weten nodig. Feitelijk is dit een verdere uitrol van de corona check van het OLVG, maar dan gebruikmakend van de PGO infrastructuur.

Capaciteitsbeheer en SANER

Photo by Martha Dominguez de Gouveia on Unsplash

Op het chatforum van FHIR is ook veel te doen over COVID-19, en dat leidde heel snel tot een initiatief: SANER. Dit is een standaard-in-wording (een “Implementation Guide”) voor het uitwisselen van beschikbare resources in ziekenhuizen: aantallen bedden, beademingsapparaten etc. Dergelijke gegevens worden nu veelal uitgewisseld door ze te verzamelen en opnieuw in te voeren. Wanneer deze gegevens live vanuit de ziekenhuissystemen uitgewisseld kunnen worden met de landelijke databases scheelt dat veel werk en mogelijk fouten. Het SANER initiatief trekt veel belangstelling, er zijn dagelijkse meetings (betrokken partijen zijn onder andere Epic, Cerner en Microsoft) en laat zien in wat voor tempo nieuwe specificaties gemaakt kunnen worden.

(Update 31-3-2020: Dit artikel net geplaatst, en het de NOS meldde dat 2TWNTY4 een landelijk platform uitrolt voor beschikbaarheid van bedden.)

Nu verder, met standaarden

Gabrielle Speijer, radiotherapeut-oncoloog, zei onlangs in een interview: “De COVID-19 crisis vergt het uiterste van de zorg… (zo) … biedt SNOMED nieuwe COVID-19 gerelateerde termen. Dit levert uniforme data op die artsen en onderzoeksinstellingen gebruiken voor analyses om verdere verspreiding te voorkomen. Dit soort specifieke toepassingen vraagt om een robuust en betrouwbaar systeem, waar HL7 een belangrijke schakel in is.”.

Nogmaals de disclaimer: dit is een schets, zorgprofessionals moeten invullen wat precies nodig is. Het goede nieuws is: veel van de HL7 componenten die nodig zullen zijn, zijn er al. Wanneer we langere tijd met dit virus zullen leven, en daar ziet het wel naar uit, moeten we zorgen dat we op een gestructureerde, beheersbare manier de gegevens delen die nodig zijn. HL7, LOINC en Snomed CT zijn daar een onlosmakelijk onderdeel van.