
Axioms of Versioning

Marc de Graauw

http://creativecommons.org/licenses/by-nd/3.0/

Intro

• What is compatibility anyway?

• A relation between two: languages?
applications? documents or messages?
schema‟s?

• What is back- and forward compatibility?

• What does it mean when we say a version
of a language is back- or forward
compatible with another?

• Focus on messaging

http://creativecommons.org/licenses/by-nd/3.0/

Semantical

Equivalence

Sets

http://creativecommons.org/licenses/by-nd/3.0/

Refreshening Set Theory

• { cat, dog, lion }

• { 1, 2, 3 }

• { an integer between zero and four }

• { } = ø

• { cat, cat } = { cat }

• { cat, dog } = { dog, cat }

• { cat, dog } subset of { cat, dog, mouse }

• { cat, dog } intersection { cat, lion } = { cat }

• { cat, dog } union { cat, lion } = { cat, dog, lion }

http://creativecommons.org/licenses/by-nd/3.0/

ELx

U

Lx

http://creativecommons.org/licenses/by-nd/3.0/

Extension of a language

• There‟s a language specification, Lx

• Lx documents are blue rectangles

• The extension ELX of Lx are all (possible) blue
rectangles

• All non-blues and all non-rectangles are not in
ELx

• The set of all blues is a superset of ELx

• The set of all rectangles are a is a superset of
ELx

• Ly and Lz are extensional superlanguages of Lx

http://creativecommons.org/licenses/by-nd/3.0/

ELx

ELy

U

Ly

Lx

http://creativecommons.org/licenses/by-nd/3.0/

ELx

ELz

U

Lz

Lx

http://creativecommons.org/licenses/by-nd/3.0/

ELx

ELz U

Lz

Ly

Lx

ELz

http://creativecommons.org/licenses/by-nd/3.0/

Extensional equivalence

• L1: about traffic lights

– <code>1</code> = Red

– <code>2</code> = Green

• L2: about gender

– <code>1</code> = Male

– <code>2</code> = Female

http://creativecommons.org/licenses/by-nd/3.0/

Extensional equivalence

• Extensional equivalence only applies to the set
of documents

• If two languages have the same documents,
they are extensionally equivalent, even if they
are about completely different things

• L1 may be about traffic lights and L2 about
gender, but if for both the set of documents is
{ <code>1</code>, <code>2</code> } then they
are extensionally equivalent, even if their
meaning is completely different

http://creativecommons.org/licenses/by-nd/3.0/

ELx

U
Lx

Px1

accept

reject

http://creativecommons.org/licenses/by-nd/3.0/

Accept and Reject

• Applications can read and write
(consume/produce, send/receive)
documents

• Assume now: docs read == docs written

• Processor Px accepts all blue rectangles,
and rejects all other documents

• Through accepting and rejecting Px
establishes the set of documents which
are syntactically conformant with Lx

http://creativecommons.org/licenses/by-nd/3.0/

Semantics of a language

• Some languages may define little semantics

• Most often: in natural language description

• Plus: schema‟s, UML, other

• Use formal semantics for defining compatibility?

– logic, OWL

– too hard for capturing semantics of a complex

language as HL7v3

– defeats the problem

http://creativecommons.org/licenses/by-nd/3.0/

Semantics and Behavior

• Ground notion of compatibility in application
behavior?

• Language spec should enable an engineer to
implement conforming application

• Application exhibits behavior

• Word processor reads doc
– behavior: display text, properly formatted

• Medical application receiver prescription
message
– behavior: display appropriate medicine and dosage

• Languages may not define application behavior

http://creativecommons.org/licenses/by-nd/3.0/

Message endpoint

http://creativecommons.org/licenses/by-nd/3.0/

Behavior of message endpoint

• Message endpoint: black box

• Exhibits some behavior

• But: may be no behavior at all

– change of address message: no immediate

visible behavior

• Non-deterministic: pharmacist may ignore

or change medical prescription

http://creativecommons.org/licenses/by-nd/3.0/

<code code=”27”

codeSystem=”2.16.840.1.113883.2

.4.4.5” />

"Dissolve in water"

http://creativecommons.org/licenses/by-nd/3.0/

Message endpoint

http://creativecommons.org/licenses/by-nd/3.0/

Behavior of message endpoint

• Endpoint is black box

• Take humans “out of the box”

• Humans judge behavior

• Assume deterministic behavior

– start-state plus message determine end-state

• Behavior of endpoint is testable condition

• Real life behavior does not matter much

• Base semantics in behavior: perfect fit

http://creativecommons.org/licenses/by-nd/3.0/

ELx
U

Lx

Px1 “high”!

“wide”!

“square”!

http://creativecommons.org/licenses/by-nd/3.0/

Processors and Behavior

• For every document received, Px exhibits
behavior

• Does document determine behavior?

• Reliable messaging

– order is executed

– duplicate is ignored

• Document determines behavior

– assuming the same start-state

– enough to make compatibility testable

http://creativecommons.org/licenses/by-nd/3.0/

Compatibility is a relation between two

applications

http://creativecommons.org/licenses/by-nd/3.0/

Some Idealizations

• Every language specification is flawless

• There is a perfect processor for every

language

• That processor is an exemplar of the

language

• Not: docs read == docs written

http://creativecommons.org/licenses/by-nd/3.0/

Ly

Py accept

reject

MLx

ELy

U

make

reject

Lx

Px

accept

reject

make

reject

MLy

ELx

http://creativecommons.org/licenses/by-nd/3.0/

Syntactical Compatibility

• Two language processors are syntactically

compatible if they accept each other‟s

documents

• Common case: both implement the same

language

• Also: one processor makes orders, second

processor accepts those but only makes

order confirmations

http://creativecommons.org/licenses/by-nd/3.0/

Ly

Py

accept

reject

MLx = MLy

ELx

U

ELz

make

reject

Lx

Px

accept

reject

make

reject

http://creativecommons.org/licenses/by-nd/3.0/

Lx+1

Px+1

accept

MLx

MLx+1

U

make

reject

Lx

Px

accept

make

reject

ELx = ELx+1

http://creativecommons.org/licenses/by-nd/3.0/

Compatibility and Versioning

• Backward syntactical compatibility: Px+1 must
accept all documents of Px

• Forward syntactical compatibility: Px must
accept all documents of Px+1

• Key: make a processor accept more than it
produces (or understands)

• Accept/reject establishes syntactical
compatibility

• Accept/reject is itself behavioral (thus
semantical)

http://creativecommons.org/licenses/by-nd/3.0/

ELx
U

Lx

Px1

“high”!

“wide”!

“square”!

MLx

SLx,1

SLx,2

SLx,3

http://creativecommons.org/licenses/by-nd/3.0/

ELx+1
U

Lx+1
Px+1

“wide”!

“street”!

“tree”!

“house”!

“high”!

“lawn”!

“square”!

“shed”!

“bush”!

http://creativecommons.org/licenses/by-nd/3.0/

Semantical Equivalence Set

• For each document d which Px accepts,

there is a set of documents, with which Px

does the same as with d: the semantical

equivalence set SLx,d of document d

• Px+1 slices SLx,d up into smaller sets, for

which Px+1 adds behavior

http://creativecommons.org/licenses/by-nd/3.0/

Semantical Equivalence Set

• For every document produced by Px, Px+1 will
behave as Px expects
– More general: Px+1 should not violate the semantics

defined in Lx

• It is safe for Px to send messages to Px+1

• For documents produced by Px+1, Px+1 will
„know‟ how Px will behave
– If Px‟s behavior is not acceptable, Px+1 should not

send the message

– More general: Px+1 must ensure Px will not accept
the message and exhibit the behaviour defined in Lx

• It is safe for Px to send messages to Px+1

http://creativecommons.org/licenses/by-nd/3.0/

Implementing

syntactical forward compatiblity

enables

semantic enhancement

http://creativecommons.org/licenses/by-nd/3.0/

Conclusion

The basics of compatible versioning are:

1. make sure Px accepts more documents

than it produces (or fully understands),

and,

2. partition the semantical equivalence sets

of Px into smaller, more refined

semantical equivalence sets for Px+1

with additional (new) behavior.

http://creativecommons.org/licenses/by-nd/3.0/

Definitions

1. Two languages are extensionally equivalent if they accept the same set of documents.

2. A language is an extensional sublanguage of a second language if all documents accepted by the first language
are also accepted by the second.

3. If two processors behave the same for every document which belongs to a language Lx, the processors are
behaviourally equivalent for Lx.

4. Two languages are syntactically compatible if they accept the documents produced by each other.

5. A language change is syntactically backward compatible if a new receiver accepts all documents produced by an
older sender.

6. A language change is syntactically forward compatible if an old receiver accepts all documents produced by a new
sender.

7. If two languages take the same documents as input, and their processors behave the same for every document,
the languages are semantically equivalent.

8. The semantical equivalence set of a document d is the set of documents which make a processor behave the
same as d.

9. A language is a semantical superlanguage of a second language if for all documents produced by the second
language, processors of the first language behave the same as processors of the second language.

10. A later version of a language is semantically backward compatible with an earlier version if the later version is a
semantical superlanguage of the earlier one (an old sender may expect a newer, but semantically backward
compatible, receiver to behave as the sender intended).

11. An earlier language is semantically forward compatible with a later language iff the later language is a semantical
sublanguage of the earlier one (this is only possible if a language loses semantics).

12. A later language semantically extends and earlier language if the later language introduces new behaviour for
some documents accepted, but not produced by the earlier one.

http://creativecommons.org/licenses/by-nd/3.0/

